Smoothing sample extremes: The mixed model approach
نویسندگان
چکیده
منابع مشابه
On the reduction of the ordinary kriging smoothing effect
A simple but novel and applicable approach is proposed to solve the problem of smoothing effect of ordinary kriging estimate which is widely used in mining and earth sciences. It is based on transformation equation in which Z scores are derived from ordinary kriging estimates and then rescaled by the standard deviation of sample data and the sample mean is added to the result. It bears the grea...
متن کاملPAIRED ANISOTROPIC DISTRIBUTION FOR IMAGE SELECTIVE SMOOTHING
In this paper, we present a novel approach for image selective smoothing by the evolution of two paired nonlinear partial differential equations. The distribution coefficient in de-noising equation controls the speed of distribution, and is determined by the edge-strength function. In the previous works, the edge-strength function depends on isotropic smoothing of the image...
متن کاملA mixed Bayesian/Frequentist approach in sample size determination problem for clinical trials
In this paper we introduce a stochastic optimization method based ona mixed Bayesian/frequentist approach to a sample size determinationproblem in a clinical trial. The data are assumed to come from a nor-mal distribution for which both the mean and the variance are unknown.In contrast to the usual Bayesian decision theoretic methodology, whichassumes a single decision maker, our method recogni...
متن کاملSome Asymptotic Results on Generalized Penalized Spline Smoothing
The paper discusses asymptotic properties of penalized spline smoothing if the spline basis increases with the sample size. The proof is provided in a generalized smoothing model allowing for non-normal responses. The results are extended in two ways. First, assuming the spline coefficients to be a priori normally distributed links the smoothing framework to generalized linear mixed models (GLM...
متن کاملA Partial Likelihood Approach to the Smooth Estimation of Dynamic Covariate Effects
Survival data are often modelled by the Cox proportional hazards model, which assumes that covariate effects are constant over time. In recent years however, several new approaches have been suggested which allow covariate effects to vary with time. Non-proportional hazard functions, with covariate effects changing dynamically, can be fitted using penalised spline (P -spline) smoothing. By util...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 53 شماره
صفحات -
تاریخ انتشار 2009